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Introduction. According to the classical theory of piezoelectricity. there 
can be no piezoelectric effect in centrosymmetric crystals. Consequently the 
theory has it that vibrations of a centrosymmetric crystal plate cannot be excited, 
for example, by applying an alternating voltage drop between electrodes on the 
opposing faces of the plate. This conclusion is a direct result. of the assumption, 
in the theory, that the stored energy of deformation and polarization is a function 
of the strain and polarization only [l]. Hence the only possible electromechani- 
cal interaction energy is the product of a second rank tensor (strain) and a first 

rank tensor (polarization) - with a third rank material coefficient (a piezoelec- 
tric constant). Since there are no third rank centrosymmetric tensors, there is no 
piezoelectric effect in centrosymmetric materials. 

There is reason to believe, however, that the stored energy of deformation and 
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polarization should depend not only on the strain and polarization. but also on the 

polarization gradient. The augmented theory f2] based on such an assumption can 
find justification on the grounds that : (1) it accommodates the mathematical 
representation of a surface energy of deformation and polarization p] which is 
absent from the classical theory but which has been measured in the laboratory 

and calculated from atomic considerations ; (2) it can account [3] for an apparent 
anomaly observed in measurements of the electrical capacitance of thin, dielec- 

tric films; (3) the resulting equations, rather than the classical ones, are the cor- 
rect, low frequency limit p, 57 of the modern dynamical theory of crystal lattices 

of electronically polarizable atoms. 
If the polarization gradient is admitted as a variable in the stored energy func- 

tion. an additional interaction energy, between the two second rank tensors of 

strain and polarization gradient, is possible. Since the accompanying material 
coefficient is fourth rank, it represents a possible electromechanical effect in 

centrosymmetric materials. 
In the following paragraphs, it is shown that, at least in principle, it is possible 

to excite thickness vibrations in a centrosymmetric cubic crystal plate by apply- 
ing an alternating voltage drop between electrodes on a pair of (100) faces of the 
plate, Approximate mode shapes and frequencies are calculated for the case of 
sodium chloride; for which it is found,also, that the electromechanical coupling 
coefficient can be as large as one four-hundredth of that of an X-cut quartz plate. 

1, Field squation: rnd boundary condition@, The linear equations of 
an elastic dielectric continuum, including the contribution of the polarization gradient 

to the stored energy, have been derived elsewhere p] by means of a simple extension 

of Toupin’s [l] variational principle for the classical equations of piezoelectricity. For 
the present case, we consider a plate of cubic crystal class m3m (O,,) 143 bounded by a 

pair of (100) faces, at I = -& h on which are deposited electrode films to which are 
applied voltages f Veiat. If end effects are neglected, the mechanical and electrical 
fields are one-dimensional and are governed by the equations f2) 

where (8 = d / dz) , u and P are the r-components of the mechanical displacement 
and electronic polarization, respectively, and ‘p is the potential of the Maxwell, electric 
self-field. Also, p is the mass density, err is an elastic stiffness, &s is the permittivity 
of a vacuum and &+z,, is the reciprocal dielectric s~ceptibili~. The remaining two 

constants, brtand d,, are associated with terms, in the energy density, involving polari- 
zation gradient: l/zb,, is the coefficient of a quadratic term and c&is the coefficient 
of a product of polarization gradient and strain: ~P&L. Thus, &is the additional elec- 

tromechanical constant without which, as may be seen from (l), the mechanical and 
electrical fields would not be coupled. 

As for the boundary conditions. we suppose that the mass and stiffnes of the electrodes 

are negligible, in comparison with those of the plate, so that the tractions across s = 
= * hare zero. 

This condition, as shown previously @], is 
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(CJU + WP>x=&n = 0 CW 
Also, as shown previously P]. we may set 

(&+I = - kV/G,h (Odkdi) (2b) 

with zero the most likely value of k: corresponding to continuity of polarization across 
the crystal-electrode interfaces. Finally, the applied voltage is taken as 

((PL*h = f v (2c1 

It may be noted that independent specification of boundary values of polarization and 
potential is permissible in the augmented theory, but not in the classical theory. 

2. Solution, In view of the boundary conditions (2), a solution of (If, with appro- 
priate symmetry and form, is 

u = A cos %x, P = B, f B cos gx, fp = Cox + C sin Es (3) 

Upon substituting (3) in (I), we find 

B,, = - a11 -lCo, I3 =e,gc (4) 

A aduE. 3 
-=- 
C c11p - pa* 

-c _ 1-t eoml + eohP 
due 

(5) 

The second of (5) is a quadratic in Es : 

VW11 
(6) 

- rE,,%, E4 - fe&,,po2 - (1 + WQ,)c,,lP - (1 + a,arr) PO2 = 0 

Now, ~sitive-defi~teness of the energy density requires 

kll - 412 > 0, a11 > 0 (7) 

Hence, one of the roots E2! of (6). is positive real and the other is negative real; so that 
one ‘,$ is real and the other is imaginary. Accordingly, from (4) to (7), we may rewrite 

the solution (3) as 
‘u = arc, cos frx + a2C, ch fax 

(8) 

where 
cp = C,x + C, sin &x + C&2 g2x 

&$Z - 
mdllff3 

c11g + f- i)'pt@ 

= 1 + &an - (- I)idl*4iz 
(- 2f’dl&: (9) 

upon substituting (8) in the boundary conditions (2). we find 

ha1 -I- v41%l)%lC1 sin %& - ha2 + wL%J%~C~ sh E2 h = 0 (10) 

-Co + E,,~,,~,C, cos &h + eoallE2C2 ch E2 h = kV ! h 

C,h + C, sin &h + C, sh &h = V 

It may be seen, from (X0), that the applied voltage V forces both the mechanical and 
electrical fields. 

Resonance occurs when the determinant of the coefficients of Co, C, and Cz in (lo), 
vanishes ; or, when 
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in which (9) has been employed. 

8. Appliorcion of #odium ohlorldr. For sodium chloride, the following 

are values of the material constants appearing in the solution: 

-1 -1 
e. a11 = 4.6 [l. pp.68,69]. 

b,, = 6.83 xlo’dyn-cm’ /coula [5], 

Cl1 = 4.83 x lO”dyn/cms (6, p. 393. 

41 = 4.67 ~10~ dyn-cm/coul 151. 

e0 -' ==3636nxlO~dyn-cmg/coul’[4, p.683, 

P = 2.214 gm/cm’ @L pp. 39, 88-J. 

With these numerical values of the constan& simple approximate expressions for the 
resonance frequencies and mode shapes can be found. 

At low frequencies, we find, from (6). 

lim G-1 = 
[ 

bll-Lill’fcu I ‘1, 
eo-’ (1 + eaall) =: 1.3 x 10-s cm. 

u+o 
(12) 

Considering plate thicknesses of the order of millimeters, (12) indicates an extremely 
rapid decay, away from the surfaces of the plate, of the exponential parts of the fields, 
leaving 

u z alCr co9 &iZ, P s --a,~-%@ + e&C, CO8 &lZ 

cp z Cfl + Cl ain Elz 
(13) 

over most of the thickness of the plate. In fact, the decay modulus (12) is less than one- 
half the nearest neighbor distance, 

a = 2.83* iOd ,cm, 

of the sodium chloride lattice. Also, with (12). the roots of (11) are very nearly roots of 

sin &h = 0, frh # 0, 
OK 

&lh = nn, n = 1, 2, 3, . . . 

Finally, rewriting (6) in the form 

(i-5) 
1 + e.aau+ eobll~' 

4, -s-o 

and noting that 
a&l” 
- z 4.i0-17cma 
Cl1 

we see that the frequencies given by (16) are approximately 

” = El (Cl1 1 PP 
Hence, from (15). 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

or 

f 
4.7 ?I =gs-gi- XWcyc/sec, 

where 2h is the thickness of the plate in millimeters. Thus, for a plate one millimeter 

thick, the lowest resonance (n = 1) has a frequency of about 4.7 megacycles per second. 
It may be noted that this mode has two nodes. l the central half of the thickness of the 
plate and the outer quarters move in opposite directions. This is the mode most likely 
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to be detected ; but the response is very sharp in comparison with that of a piezoelectric 
crystal such as quartz, as may be seen from a calculation of an electromechanical coup- 

ling coefficient. 

An electromechanical coupling coefficient may be defined as the square root of the 
ratio of the strain energy to the total energy - both at zero frequency. 

At o = 0, the solution (8) reduces to p] 

u,, = B1 ch Ezz, P,, = A2 + B, ch 522, ‘~0 = Asx + B, sh Ezz (21) 
where fa is given by (12) and 

A 2 = Aa I a,,, B, = eofaBs = -cllBll~,,, AS = Bs~oa,,WQh 

B3= (1 - k) V (sh%,h + e,,a11%,h ch E&)-l 
(22) 

The strain energy per unit area is 
h 

W8 = y 5 (&4o)2ds = 
eo2~a2&~2 (1 - k)’ P (sh 2&h - 2&h) 

-h 
4~11 (sh &h + eon11Ezh ch $# (23) 

The total energy per unit area is V times the surface charge: 

w = Y(e&Jo - PO)_h = 
@s (1 + eaau) (1 - k) Ya ch Eah kV2 (I + Wll) 

sh &h + eoa& h ch Eah + hall (24) 

Taking into account the fact that fzh is very large, the electromechanical coupling coef- 
ficient, for the case k = 0, is 

F,zdd ‘I2 

2w1i2 cl1 (1 + Q-‘~11-1) h 
z 2.4. IO-4 

(25) 
(for h = 1 mm) 

This is to be compared with 9.5 x lo-” for an X-cut quartz plate n]. Thus, for k = 0 , 

the coefficient for the sodium chloride plate is one four-hundredth that for the quartz 

plate, resulting in a resonance band width to be much narrower p]. It is interesting to 
note that the coupling coefficient (25) is inversely proportional to the square root of the 

thickness of the plate, whereas the coefficient in the piezoelectric case is independent 

of the thickness. 
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